L-arginine deficiency causes suppression of nonadrenergic noncholinergic nerve-mediated smooth muscle relaxation: role of L-citrulline recycling.
نویسندگان
چکیده
Studies were performed on the internal anal sphincter (IAS) smooth muscle strips obtained from opossums (Didelphis virginiana). Isometric tension and L-arginine levels of the tissues were measured under basal conditions, in the presence of electrical field stimulation (EFS) and after treatment with different concentrations of arginase. For the nonadrenergic noncholinergic nerve stimulation, short trains (4 sec) as well as continuous EFS were used. During continuous EFS, after the initial IAS relaxation, the response began to fade within several min to approximately 80% recovery of the basal tone. We also examined the influence of L-arginine and L-citrulline on these responses. For some studies, the tissues were pretreated with L-glutamine (an inhibitor of L-citrulline uptake), L-glutamate or N(G)-hydroxy-L-arginine (an inhibitor of arginase). Interestingly, the basal levels of L-arginine were found to be significantly higher in the IAS (tonic smooth muscle) than in the rectal (phasic smooth muscle) smooth muscle. Arginase caused a concentration-dependent attenuation of the IAS relaxation caused by EFS. L-Citrulline and L-arginine were equipotent in reversing the attenuation. Both arginase (60 min pretreatment) and continuous EFS (tissues collected at the time of maximal recovery of the basal IAS tone after the initial relaxation) caused significant decreases in L-arginine levels. The decreases in the levels of L-arginine were restored by the exogenous administration of either L-arginine or L-citrulline. The restoration of L-arginine levels by L-citrulline but not by L-arginine was selectively blocked by L-glutamine. Furthermore, the IAS relaxation, attenuated by arginase was unaffected by L-glutamine but was restored by N-hydroxy-L-arginine pretreatment. The studies suggest that L-citrulline-L-arginine recycling may play a significant role in the maintenance of IAS relaxation in response to nonadrenergic noncholinergic nerve stimulation.
منابع مشابه
Nitric oxide in the peripheral nervous system.
Nitric oxide (NO) is a neurotransmitter and neuromodulator in the central nervous system, but this small labile substance also seems to serve as a peripheral neurotransmitter. Abundant evidence is now available that NO, synthesized from L-arginine by NO synthase (NOS), is a nonadrenergic noncholinergic relaxant transmitter of gastrointestinal smooth muscle. Electrically induced nonadrenergic no...
متن کاملArginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation
BACKGROUND Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the mod...
متن کاملInvolvement of pituitary adenylate cyclase-activating peptide in opossum internal anal sphincter relaxation.
Despite its widespread distribution and significance in the gut, the role of pituitary adenylate cyclase-activating peptide (PACAP) in internal anal sphincter (IAS) relaxation has not been examined. This study examined the role of PACAP in nonadrenergic noncholinergic (NANC) nerve-mediated relaxation of IAS smooth muscle. Circular smooth muscle strips from the opossum IAS were prepared for meas...
متن کاملBiochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor.
An increase in arginase activity has been associated with the pathophysiology of a number of conditions, including an impairment in nonadrenergic and noncholinergic (NANC) nerve-mediated relaxation of the gastrointestinal smooth muscle. An arginase inhibitor may rectify this condition. We compared the effects of a newly designed arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH), with t...
متن کاملNO does not mediate inhibitory neural responses in sheep airway and bronchial vascular smooth muscle.
Endogenous nitric oxide (NO) influences acetylcholine-induced bronchovascular dilation in sheep and is a mediator of the airway smooth muscle inhibitory nonadrenergic, noncholinergic neural response in several species. This study was designed to determine the importance of NO as a neurally derived modulator of ovine airway and bronchial vascular smooth muscle. We measured the response of pulmon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 282 1 شماره
صفحات -
تاریخ انتشار 1997